3x^2+12x+13=4x+25

Simple and best practice solution for 3x^2+12x+13=4x+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+12x+13=4x+25 equation:


Simplifying
3x2 + 12x + 13 = 4x + 25

Reorder the terms:
13 + 12x + 3x2 = 4x + 25

Reorder the terms:
13 + 12x + 3x2 = 25 + 4x

Solving
13 + 12x + 3x2 = 25 + 4x

Solving for variable 'x'.

Reorder the terms:
13 + -25 + 12x + -4x + 3x2 = 25 + 4x + -25 + -4x

Combine like terms: 13 + -25 = -12
-12 + 12x + -4x + 3x2 = 25 + 4x + -25 + -4x

Combine like terms: 12x + -4x = 8x
-12 + 8x + 3x2 = 25 + 4x + -25 + -4x

Reorder the terms:
-12 + 8x + 3x2 = 25 + -25 + 4x + -4x

Combine like terms: 25 + -25 = 0
-12 + 8x + 3x2 = 0 + 4x + -4x
-12 + 8x + 3x2 = 4x + -4x

Combine like terms: 4x + -4x = 0
-12 + 8x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-4 + 2.666666667x + x2 = 0

Move the constant term to the right:

Add '4' to each side of the equation.
-4 + 2.666666667x + 4 + x2 = 0 + 4

Reorder the terms:
-4 + 4 + 2.666666667x + x2 = 0 + 4

Combine like terms: -4 + 4 = 0
0 + 2.666666667x + x2 = 0 + 4
2.666666667x + x2 = 0 + 4

Combine like terms: 0 + 4 = 4
2.666666667x + x2 = 4

The x term is 2.666666667x.  Take half its coefficient (1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
2.666666667x + 1.777777780 + x2 = 4 + 1.777777780

Reorder the terms:
1.777777780 + 2.666666667x + x2 = 4 + 1.777777780

Combine like terms: 4 + 1.777777780 = 5.77777778
1.777777780 + 2.666666667x + x2 = 5.77777778

Factor a perfect square on the left side:
(x + 1.333333334)(x + 1.333333334) = 5.77777778

Calculate the square root of the right side: 2.403700851

Break this problem into two subproblems by setting 
(x + 1.333333334) equal to 2.403700851 and -2.403700851.

Subproblem 1

x + 1.333333334 = 2.403700851 Simplifying x + 1.333333334 = 2.403700851 Reorder the terms: 1.333333334 + x = 2.403700851 Solving 1.333333334 + x = 2.403700851 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = 2.403700851 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = 2.403700851 + -1.333333334 x = 2.403700851 + -1.333333334 Combine like terms: 2.403700851 + -1.333333334 = 1.070367517 x = 1.070367517 Simplifying x = 1.070367517

Subproblem 2

x + 1.333333334 = -2.403700851 Simplifying x + 1.333333334 = -2.403700851 Reorder the terms: 1.333333334 + x = -2.403700851 Solving 1.333333334 + x = -2.403700851 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = -2.403700851 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = -2.403700851 + -1.333333334 x = -2.403700851 + -1.333333334 Combine like terms: -2.403700851 + -1.333333334 = -3.737034185 x = -3.737034185 Simplifying x = -3.737034185

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.070367517, -3.737034185}

See similar equations:

| 3z^2+16=2z^2-8z | | 4x^2+4y^2-12y+9=0 | | 5x+9=51-1x | | 200-(2)(2)(Q)=200-2(Q) | | 7x+9=3x+10 | | 5x-3x+13=x+6 | | 7b+6.75=4b | | -1x-2y=2 | | 3n+n=13n | | (2-6)+4(x-3)= | | 152+10c=200+4c | | M=h | | y-5=-3x+2 | | 1ax-3a=13 | | y-5=-3x+3 | | 5x-30=82+2x | | 5m^2+12m+4=0 | | 18x^2+12x+22= | | X^2+6y^2+17x+2y-38=0 | | x*.05=1.55 | | F(x)=(x+4)(4x^2+3) | | 72=4Q | | x-5=10+12x | | A+K=56 | | x*.05=2.24 | | 3x+2y=71 | | 36+3y-13=13y-12-3y | | -6x^2+17x-7=0 | | x*.05=2.38 | | -6x^2-17x+7=0 | | 100x=20-x | | 56x=20-x |

Equations solver categories